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Abstract

Large-scale virtualized data centers enabling today’s
cloud services now require the cloud providers to im-
plement easily configurable, fault-tolerant, and energy-
efficient cloud management systems.

In this demo we present the self-organization, self-
healing, and self-optimization mechanisms of Snooze, a
novel cloud management system based on a hierarchical
architecture. Particularly, we focus on four key features:
(1) dynamic hierarchy construction; (2) hierarchy failure
recovery; (3) periodic and event-based (e.g. underload)
virtual machine live migration for idle time creation; (4)
power management to transition idle servers into a low-
power state for energy savings.

1 Introduction

Over the past years, the enormous demand for cloud
services has motivated the cloud providers to deploy
increasing numbers of large-scale data centers. Man-
aging such data centers is a challenging task as it de-
mands for cloud management system with a number of
important and non-trivial to fulfill properties: (1) scal-
ability; (2) fault tolerance; (3) energy efficiency; (4)
ease of configuration. One way to enable the afore-
mentioned properties is to implement decentralized self-
organizing, self-healing, and self-optimizing cloud man-
agement systems. A number of attempts have been made
in the last years to design and implement such systems
with a primary focus on Virtual Machine (VM) man-
agement. Prominent examples include Eucalyptus [1],
OpenStack [6], Nimbus [5], and VMware DRM [7].
However, all of them are still based on either centralized
architectures and/or lack self-organization, self-healing,
and self-optimization features. While the former aspect
limits the scalability, the latter three aspects result in a
reduced autonomy.

To tackle the introduced drawbacks of existing cloud

management systems, in our previous work we have pro-
posed Snooze [2, 3], a novel cloud management sys-
tem based on a self-organizing, self-healing, and self-
optimizing hierarchical architecture. Snooze is imple-
mented from scratch in Java and comprises approxi-
mately 15 000 of highly modular code. It has been
extensively evaluated on the Grid’5000 experimentation
testbed using realistic applications and shown to be scal-
able, fault-tolerant, and energy-efficient. Since May
2012, Snooze has been distributed in open-source under
the GPL v2 license at http://snooze.inria.fr.

In this demonstration we highlight the key features
of the Snooze cloud management system. They in-
volve ease of configuration, fault tolerance, and energy-
efficiency via self-organization, self-healing, and self-
optimization, respectively.

The remainder of this document is structured as fol-
lows. Section 2 introduces the Snooze architecture. Sec-
tion 3 presents the demonstration scenarios. Finally, our
use cases are discussed in Section 4.

2 System Architecture

We now give a brief overview of the Snooze cloud man-
agement system. The high-level Snooze system architec-
ture is shown in Figure 1. It is partitioned in three layers:
client, management, and compute. At the compute layer
each physical server is managed by a system service,
the so-called Local Controller (LC). To scale the system,
LCs are grouped together with each of them being man-
aged by a highly available system service at the manage-
ment layer, the so-called Group Manager (GM). LCs re-
ceive VM life-cycle and server power management com-
mands from the GM. Moreover, they monitor the re-
source utilization and detect server underload/overload
situations. The GMs implement self-optimization mech-
anisms such as underload/overload mitigation, periodic
VM consolidation, and power management. A Group
Leader (GL) service oversees the GMs. It is elected
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among the GMs during the system boot up and after a GL
failure. The GL accepts VM submission requests from
the clients and dispatches them among the GMs. More-
over, it integrates policies to assign LCs to GMs during
system boot up and after a GM failure. Finally, a number
of replicated system services, the so-called Entry Points
(EPs) exist for the clients to discover the current GL. It is
up to the system administrator to decide on the number
of LCs, GMs, and EPs during the system setup. System
services can by dynamically added/removed at runtime.
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Figure 1: High-level system architecture

3 Demonstration Scenarios

We now introduce our demonstration scenarios. They
are divided in three parts: self-organization, self-healing,
and self-optimization. All the scenarios will be visual-
ized using a Graphical User Interface (GUI) which pro-
vides a real-time view of the current hierarchy organi-
zation. They will be performed on a single machine by
deploying all Snooze system services on the laptop.
Self-organization. To ease the system services config-
uration, when the system services are booted, the hier-
archy needs to be dynamically constructed. This phase
involves three steps: (1) GL election; (2) GM join; (3)
LC join. In Snooze, GL election is implemented on top
of the Apache ZooKeeper highly available coordination
service [4]. This part of the demo visualizes how the GL
is elected and joined (i.e. discovered and notified) by the
GMs. Moreover, it shows how the LCs discover a GL,
get a GM assigned, and register with the GM.
Self-healing. System services can fail at any time be-
cause of either hardware or software failures. We distin-
guish between three types of failures: GL, GM, and LC.
In the event of a GL failure, a new GL must be elected
among the GMs. In the event of GM failure, LCs pre-
viously assigned to the failed GM must be assigned to
another GM. Finally, in the event of a LC failure, the LC

needs to be removed from the assigned GM database. In
this demo we inject GL, GM, and LC failures into the
system and visualize the recovery.
Self-optimization. Finally, one of the major chal-
lenges in today’s data centers is server underutilization
and thus wasted energy. To remove underutilized servers,
each GM integrates event-based server underload mitiga-
tion and performs periodic VM consolidation. A power
management service exists to detect idle servers and tran-
sition them into a low-power state (e.g. suspend). In this
part of the demo we visualize how Snooze leverages the
aforementioned mechanisms to conserve energy.

4 Use Cases

We now discuss three Snooze use cases: (1) scalable data
center management; (2) research testbed for VM man-
agement algorithms; (3) building block for Platform-as-
a-Service (PaaS) cloud stacks.
Scalable data center management. The hierarchical
architecture allows to manage production data centers
hosting a large number of physical and virtual servers.

Research testbed for VM management algorithms.
The modular system design enables researchers working
on VM management algorithms (e.g. underload mitiga-
tion, consolidation) to easily integrate and test their algo-
rithms in a realistic environment.
Building block for PaaS cloud stacks. The resource
utilization data in Snooze, can be leveraged by PaaS
cloud stacks to enable dynamic addition and removal of
VMs based on their load and application objectives.
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