
Project no. IST-033576

XtreemOS
Integrated Project

BUILDING AND PROMOTING A LINUX-BASED OPERATING SYSTEM TO SUPPORT VIRTUAL
ORGANIZATIONS FOR NEXT GENERATION GRIDS

Prototype of the first advanced version of LinuxSSI
D2.2.10

Due date of deliverable: May 31th, 2009
Actual submission date: June 12th, 2009

Start date of project: June 1st 2006

Type: Deliverable
WP number: WP2.2

Task number: T2.2.3,T2.2.4,T2.2.5,T2.2.6

Responsible institution: INRIA
Editor & and editor’s address: Christine Morin

IRISA/INRIA
Campus de Beaulieu

35042 RENNES Cedex
France

Version 1.0 / Last edited by Christine Morin / June 10, 2009

Project co-funded by the European Commission within the Sixth Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.1 23/04/09 Eugen Feller INRIA/UDUS Initial check-in, update incremental checkpoint/restart,
summary, LinuxSSI services and conclusion. Add a
description of callback implementation

0.2 20/05/09 Christine Morin INRIA Introduction/conclusion
0.3 28/05/09 John Mehnert-Spahn UDUS Add publication
0.4 05/06/09 Eugen Feller INRIA/UDUS Haiyan review modifications
0.5 10/06/09 Eugen Feller INRIA/UDUS Samuel review modifications

Reviewers:
Samuel Kortas (EDF) and Haiyan Yu (ICT)

Tasks related to this deliverable:
Task No. Task description Partners involved◦
T2.2.3 Design and implementation of advanced chekckpoint/restart

mechanisms
INRIA∗,UDUS

T2.2.4 Design and implementation of advanced reconfiguration
mechanisms

INRIA∗,NEC

T2.2.5 Design and implementation of LinuxSSI distributed file sys-
tem advanced feature

INRIA∗

T2.2.6 Design and implementation of a customizable scheduler XLAB∗,INRIA

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

D2.2.10 IST-033576

Executive Summary

This document is a companion report to the XtreemOS cluster flavour prototype. It reports on the
work done as part of WP2.2 during the last six months (M30-M36) on the design and development of
XtreemOS cluster flavour. LinuxSSI is the heart of the foundation layer for XtreemOS cluster flavour.
LinuxSSI leverages Kerrighed single system image cluster operating system developed in open source
(http://www.kerrighed.org). Most of our recent work has focused on the design and implementation
of new features in checkpoint/restart mechanisms. We have improved the support for incremental
checkpointing and the support for callbacks has been implemented.

Checkpointing overhead can be reduced by saving only contents that have changed since the last
checkpoint. Incremental checkpointing in LinuxSSI is based on a page based granularity. During the
last six months, we have significantly improved the preliminary implementation available in Novem-
ber 2008. All needed mechanisms are now available: memory page modification detection based
on the write bit, book keeping of modified pages based on a Linux-native radix tree, memory re-
gion modification detector able to detect region extension, creation, shortening and splitting. Some
performance results are reported.

Kernel checkpointers in general lack application semantic knowledge. Hence they usually have
no information about what needs to be saved and restored. Callbacks give the user the possibility to
determine what resources need to be checkpointed and what to be restored. They are registered by
the user and executed before taking a checkpoint. Due to the possibility of enabling the user to decide
which ressources need to be checkpointed or not a performance increase can be achieved.

We have produced LinuxSSI-1.0-rc1 release in May 2009. It is based on the most recent Kerrighed
development and includes the new checkpoint/restart features as well as all features from the previous
LinuxSSI releases. XtreemOS cluster flavour is available on the most recent XtreemOS installation
CD. XtreemOS-G services (AEM daemon, XtreemFS client) are able to run on top of LinuxSSI,
which also supports the system level VO support mechanisms.

1/17 XtreemOS–Integrated Project

IST-033576 D2.2.10

XtreemOS–Integrated Project 2/17

D2.2.10 IST-033576

Contents

1 Introduction 5

2 Incremental Checkpointing 5
2.1 Memory page modification detection . 5
2.2 Bookkeeping of modified pages . 6
2.3 Challenge: memory region changes . 7
2.4 Solution: Memory region modification monitor . 10
2.5 Incremental grid checkpointing . 10
2.6 Measurements . 11

3 Callbacks 12
3.1 Overview . 12
3.2 Design . 13
3.3 Implementation . 14
3.4 User Manual . 15

4 Conclusion 16

3/17 XtreemOS–Integrated Project

IST-033576 D2.2.10

XtreemOS–Integrated Project 4/17

D2.2.10 IST-033576

1 Introduction

This document describes the results of the work done with workpackage WP2.2 during the last six
months of the XtreemOS project (M30-M36) on the cluster flavour of the XtreemOS system.

LinuxSSI is the heart of the foundation layer for XtreemOS cluster flavour. LinuxSSI leverages
Kerrighed single system image cluster operating system developed in open source (http://www.
kerrighed.org). Most of our work as part of WP2.2 focuses on the design and implementation
of new features in LinuxSSI.

In this document, we describe the main features that have been developed in XtreemOS cluster
flavour since the November 2008 LinuxSSI release. The new features relate to application check-
point/restart developed as part of Task T2.2.3 Design and implementation of advanced checkpoint/restart
mechanisms. Checkpointing overhead can be reduced by saving only contents that have changed
since the last checkpoint. Incremental checkpointing in LinuxSSI is based on a page based granular-
ity. Section 2 focuses on the improvements to the incremental checkpointing mechanisms introduced
in Deliverable [3]. Kernel checkpointers in general lack application semantic knowledge. Hence
they usually have no information about what needs to be saved and restored. Callbacks give the
user the possibility to determinate what resources need to be checkpointed and what to be restored.
They are registered by the user and executed before taking a checkpoint. Due to the possibility of
enabling the user to decide which ressources need to be checkpointed or not a performance increase
can be achieved. Section 3 describes the callback mechanisms implemented for LinuxSSI kernel
checkpointer. Concluding remarks and future directions of work for LinuxSSI are given in Section 4.

2 Incremental Checkpointing

2.1 Memory page modification detection

Checkpointing overhead can be dramatically reduced by saving only content that has changed since
the previous checkpoint, [7]. The major challenge here is to detect these content modifications. Gen-
erally, there are page-based and variable based approaches.
Detection of content changes at variable-granularity-level is described in [5] where a compiler is
manually modified to detect variable changes. Thus, the compiler is enabled to insert incremental
state saving calls before a variable is changed. In [8] detection of variable changes is enabled without
manual intervention, but via an executable editing library. Furthermore, special memory hardware
exists that incrementally saves state of contained variables [4].
Detection of modified pages can be realised by taking existing page table entry bits, namely the dirty
bit or the write bit, into account.
The dirty bit is of high importance for the Linux internal memory management components, espe-
cially for the Page Cache. A set dirty bit indicates to synchronize cache contained pages with those
versions on disk and the swap partition. Just reading the dirty bit does not always inidicate changed
content. After modified cache contained data are written back to disk, the bit is reset, thus, a past
modification is not visible anymore. Bookkeeping of modified pages includes resetting the dirty bit
to detect new modifications after a taken snapshot, which is dangerous since it affects Page Cache
consistency. In [1] page modification detection is done based on the dirty bit being mirrored into one
of the reserved entry bits.

5/17 XtreemOS–Integrated Project

IST-033576 D2.2.10

Our approach to detect modified pages is write bit focussed. Each time a write-protection page-fault
occurs, the write bit is set. Such exceptions are detected by the memory management unit. An ex-
ception handler is called and resolves the exception by removing the write-protection (write bit set
to 1). Based on the detection we record modified pages in a bookkeeping control structure. At the
initial checkpoint all pages of a program address space are saved. After each checkpointing operation
all writable pages are explicitly made write-protected (write bit is reset to 0). In case an applica-
tion attempts to write on such a page within a checkpoint interval, the triggered page-fault handler
removes the write-protection. Thus, detection of modified pages is enabled during the next check-
pointing operation. Depending on the application behaviour, generally just a subset of all application
pages needs to be saved. In order to detect future write attempts in subsequent checkpoint intervals,
the write-protection will be reactivated by explicitly resetting the page write bit. Special handling of
newly added read-only pages and partially written pages after a checkpointing operation is detailed
under 2.3.
During restart the last version of a physical page needs to be located out of multiple checkpoint im-
ages. Therefore, a dedicated bookkeeping control structure is required that keeps track of the last
page’s file location and offset within the checkpoint image file, described in the following section.
We are conscious about TLB entries, which must be flushed explicitly after each incremental check-
point, since they are not updated with our write bit modification. The latter could result in incon-
sistency. However, each process context switch anyway results in flushing the TLB. Taking multiple
checkpoints within one scheduler time slice is hard to achieve due to its shortness.

2.2 Bookkeeping of modified pages

Physical page content of an application address space may be spread across multiple incremental
checkpoint images each potentially storing all or just a subset of all pages. At restart the complete
content and its consistent versions must be loaded.
We use a bookkeeping control structure that keeps track of page locations and is based on the Linux-
native radix tree. The radix tree provides fast lookup and insertion operations (O(1)) which are
needed to keep the structure in sync with the process memory structure. In figure 1 the localisation of
a virtual address-related physical page is shown. Each tree node is identified by a virtual address. A

Figure 1: Bookkeeping control structure for modified pages.

node entry stores the version of a dedicated incremental checkpoint image file (e.g. pages_5.bin for
the fifth incremental checkpoint) containing the latest version of the page, and the offset in this file,
since more than one page may be modified between two incremental checkpoints. The incremental

XtreemOS–Integrated Project 6/17

D2.2.10 IST-033576

checkpoint image file stores data blocks each containing a virtual address, page protection flags and
the page content itself. Of course, all node entries are also saved to disk at each incremental check-
point.
During a checkpointing operation the bookkeeping control structure is updated. That means, book-
keeping entries targetting not yet referenced pages are added, file locations and offsets of pages that
are present and modified and already referenced are being updated and saved to disk.
At restart the bookkeeping control structure is read from disk. Its data is used to localize memory
pages out of multiple incremental checkpoint files to restore a process’ address space.
The mere write-bit based page modification approach alone is not able to keep the bookkeeping
control structure in sync with the process memory structure, especially if memory pages have been
removed. A requirement is to delete such structure entries to avoid wasting memory. Reading from
and writing structure content to disk decreases checkpointing performance. Another issue is that
newly mapped read-only data can not be detected, which leads to inconsistency at restarting because
the corresponding content is missing. The solution for both cases are detailed in the next section.

2.3 Challenge: memory region changes

Virtual pages belong to a bigger logical unit called memory region or virtual memory area (VMA).
Memory regions can be seen as an overlay structure of continuous virtual pages. At one time one vir-
tual address belongs to exactly one memory region. Over time one virtual address may be reassigned
to a new memory region. They are implicitly created from user space (e.g. mmap system call) and
are created/managed by internal memory management mechanisms.
Memory region changes in connection with read-only and writable pages must be taken into account
when managing the bookkeeping control structure. Two criterias must be fulfilled, proper assignment
of pages to memory regions, which can be influenced by dynamic region creation/removal, and clean
management of bookkeeping control structure entries, outdated entries must be deleted. If the later
contains inappropriate content, a restart may fail or result in inconsistency.According to Linux mem-
ory region management [2] four cases of memory region changes can occur:
Rule 1 (region extension): if a new range of addresses is to be added to a process, the kernel first
tries to enlarge an existing memory region. This requires virtual address holes or free address blocks
in the process’ address space and access rights of the exisiting region and the additional addresses
being equal.
Rule 2 (region creation): if a new memory region is created and attached to the process’ address
space, the kernel tries to merge neighbouring regions, as long as they share the same access rights.
Rule 3 (region shortening): a certain address block can be removed from a region. If this address
block resides at the beginning or end of a region, the region is shortened.
Rule 4 (region splitting): if the address block to be removed resides within an existing region, the
region is splitted into two smaller regions.

The following examples demonstrate the need for an additional criteria than only checking the write
bit in order to detect memory region changes, and thus page content changes.
Case 1: An application maps file A in a separate memory region 2. The application gets check-
pointed, afterwards file A gets unmapped, memory region 2 vanishes. The application maps file B,
accidently having same size and using the virtual address block of former region 2. A new memory

7/17 XtreemOS–Integrated Project

IST-033576 D2.2.10

region 2 will be created.
In case file B has been mapped as read-only a new incremental checkpoint does not include the new

Figure 2: Region2 content with fileB has never been saved, restore old content of fileA

memory region 2 content, since no write bit has been set (see figure 2). At restart memory region 2
will be recreated containing file A (old memory region 2) content which is wrong.
In case file B has been mapped as writable and if it has been partially modified, a new incremental

Figure 3: fileB was partially modified, restore mix of old and new content

checkpoint results in saving just the pages of region 2 with the write bit being set (see figure 3). After
restart memory region 2 represents a mixture of file A and file B content which is wrong.

Case 2: this scenario is similar to the first one of case 1. However, a smaller file B is mapped,
and thus a smaller memory region 2 will be created, resulting in a hole of the virtual addresses be-
tween new region 2 and region 3.

In case file B is mapped read-only, no content of region 2 will be saved because no write bit is

Figure 4: Region2 content with fileB has never been saved, restore part of fileA.

set (see figure 4). The reduction of virtual addresses of new memory region 2 is not reflected in the
bookkeeping control structure. At restart parts of old memory region 2 will be recreated in the new
address range of region 2. These bookkeeping control structure contains more entries than supposed
to be which may result in wasted memory space.
In case file B has been mapped as writable, and if it has been partially modified, a mixture of old

and new region 2 content will be reestablished at restart (see figure 5). Furthermore, the bookkeeping
contains out-of-date data, since it does not reflect a memory region shrinkage.

XtreemOS–Integrated Project 8/17

D2.2.10 IST-033576

Figure 5: FileB was partially modified, restore mix of old and new content.

Case 3: three regions exist, a memory hole exists between region 2 and three. At checkpoint time the
complete content of all regions is saved. Afterwards, region 2, which maps file A, gets unmapped, a
new file B, which is bigger than the previous file A is mapped. New region 2 is placed between region
1 and 3, no memory hole between 1 and 2, as well as 2 and 3 exists.
In case file B is mapped read-only, no new region 2 related content is saved at an incremental check-

Figure 6: Region2 content with fileB has never been saved, restore fileA and unassigned space

point. Especially the additional virtual addresses of new region 2 opposite to old region 2, are not
taken into account, since no write bit is set. At restart, region 2 contains file A (old region 2) content.
Since the bookkeeping control structure is not aware of additional virtual addresses of new region 2
restart is likely to fail or causes inconsistency.

In case file B is mapped writable, and if it has been partially modified, a mixture of old and new

Figure 7: fileB was partially modified, restore mix of old and new content and unassigned space

content will be reestablished at restart for the address block covered by old region 2. Regarding the
additional addresses of new region 2, the same effects are expected as explained shortly before.

Case 4: in the center of memory region 1 an address block is being write-protected having differ-
ent access rights than the surrounding region 1 parts. Consequently, the Linux memory management
enforces region 1 to be splitted into three parts. Region 1, 2 and 3, with region 2 containing the pages
the mprotect call has been applied to.
In case the write-protected region 2 is not modified, or is partially modified, the same effects as de-
scribed under Case 1 occur.

9/17 XtreemOS–Integrated Project

IST-033576 D2.2.10

Case 5: region 1 contains an address block at the end or at the beginning which gets removed. The
region gets shortened. In case region 2 is read-only, the appropriate bookkeeping control structure
entries of the removed address block are not removed. Then, a new region gets created partially or
fully covering the previously removed address block.
In case the new region is read-only, or has been partially modified, effects as detailed under Case 1
occur.

2.4 Solution: Memory region modification monitor

The special cases mentioned under 2.3 occur in combination of memory region modifications with
read-only and writable content, e.g. such as shared segments, or anonymous memory region content
or memory mapped files.
To tackle these issues we introduce an additional logical layer of modification detection - a memory
region modification monitor. This monitor keeps track of memory region changes and thus com-
plements the mere write-bit focussed approach of memory page modification detection. Based on
monitor data the bookkeeping control structure can be kept in sync with the actual memory structure
of a process at checkpoint time. It is sufficient to update the corresponding bookkeeping structure
entries once, at checkpoint time, instead at each region modification event.
The monitor records region removals and additions. After each checkpoint, monitor data will be
flushed. At checkpoint time the monitor entries are used to manage the bookkeeping control struc-
ture. Its entries are compared to control structures entries. In case a region has been removed, the
start and end address of each monitor entry is used to delete appropriate bookkeeping control struc-
ture entries. This ensures control structure efficiency and consistency. In case a region has been
added, relevant bookkeeping control structure entries are added and/or updated to reference appropri-
ate checkpoint image contained pages. This allows whole new regions to be saved initially at the first
incremental checkpoint after their creation.
Our monitor supports detection of mmap and munmap calls. Therefore, we insert a monitor notifica-
tion function into the kernel functions do_mmap and do_munmap. Per mmap call the start and end
address of an affected memory region are inserted into the memory region modification monitor. A
detected munmap call results in deleting the appropriate entry of the monitor. For example, region
creation detection, via the mmap call, results in initially saving the whole physical page content at the
next checkpoint. Issues as listed under 2.3 can be avoided.
The memory region modification monitor has a similar structure as the bookkeeping structure. Its
entries are organised in a radix tree providing fast access for entry removal, addition and retrieval.
Each entry contains the memory regions start and end address of the covered virtual address range.
The structure is shown in figure 8.

2.5 Incremental grid checkpointing

In order to realise one flavour of adaptive checkpointing, our incremental checkpointing enhanced
kernel checkpointer has been integrated into the XtreemOS grid checkpointing architecture.
For the job checkpointer service to know when it is best to use a full or incremental checkpointing,

XtreemOS–Integrated Project 10/17

D2.2.10 IST-033576

Figure 8: Memory region monitor structure

the number of modified pages of an application must be computed. Therefore, the job checkpointer
service has been enabled to detect page modifications in a transparent manner for a given set of
processes. Without modifying applications, the service can self-decide which checkpoint approach to
be used by keeping efficiency.
Reporting page modifications from the kernel space to the user space domain has been achieved by
setting up a new Linux Connector [6]. The service registers at a so-called memory event connector
(MEC) at kernel-level to be informed about do_page_fault calls triggered by selected processes. The
service receives MEC messages at user space and performs accounting on page faults on a per process
base. In case the collected data exceed a certain threshold, the job checkpointing service enforces full
checkpointing. Otherwise, incremental checkpointing is used.

2.6 Measurements

The testbed consists of two desktop nodes with Intel Core 2 Duo E6850 processors (3 GHz) and 2048
MB DDR2-RAM which are connected by a gigabit network. A master node runs a tftpboot and a NFS
server providing a LinuxSSI image and a Linux environment including the directory for checkpoint
image storage to a client node. Our test application allocates 1 MB of RAM and writes integer values
to random locations in 1 millisecond intervals. A checkpoint is triggered by using the “-i” flag of the
checkpoint command.
Figure 9 shows the resulting image size of full and incremental checkpoints. Figure 10 shows the

Figure 9: Image size of full and incremental checkpointing

checkpoint duration of full and incremental checkpointing if checkpoints are issued successively in
one second intervals.

11/17 XtreemOS–Integrated Project

IST-033576 D2.2.10

Figure 10: Full and incremental checkpointing duration

Both data sets indicate incremental checkpointing takes fourth time faster especially after the ini-
tial checkpoint. Figure 9 shows the resulting image size of full and incremental checkpoints. It ap-
pears that one incremental checkpoint image file is fourth time smaller than a full checkpoint image,
especially after the initial checkpoint. Efficiency of incremental checkpointing relies on the write
behaviour of an application. Since an additional control structure and a region monitor need to be
maintained, incremental checkpointing may become inappropriate, especially when more pages have
been changed per checkpoint interval. It is the task of the grid service to figure out the best-suited
strategy.
Furthermore, restarting from an incremental checkpoint may result in accessing more than one image
file rather than to just one file with full checkpointing. Increased I/O overhead, caused by reading
from multiple files, is likely decrease restart performance.

3 Callbacks

3.1 Overview

Kernel checkpointers in general lack application semantic knowledge. Hence they usually have no
information about what needs to be saved and restored. Callbacks give the user the possibility to
determinate what resources need to be checkpointed and what to be restored. They are registered
by the user and executed before taking a checkpoint. Due to the possibility of enabling the user to
decide which resources need to be checkpointed a performance increase can be achieved. There are
currently several callback enabled kernel checkpointers available. One of them is BLCR which is
used by the XtreemOS Grid-Checkpointing service. LinuxSSI checkpointer which is also used by
the Grid-Checkpointing service didn’t have any callback support until now. We have designed and
integrated a callback solution for LinuxSSI. Furthermore the implementation was reviewed by the
Kerrighed core developers and merged into the official Kerrighed version. We will present the design
and implementation in the following chapters.

XtreemOS–Integrated Project 12/17

D2.2.10 IST-033576

3.2 Design

Our callback library is installed during the LinuxSSI setup and linked against each application which
would like to support callbacks. We provide two possible approaches to register callbacks.
The first one presupposes the master process of each application to call the init routine of the callback
library and register the callbacks. In that case the master process of each application is in charge of
executing the callbacks only.
The second approach allows each process to register his own callbacks. Hence each process has to
call the init and callback registration functions on its own. This approach requires the master process
of the application to coordinate the callback execution of its child processes.
There are two types of callbacks which can be registered by the application. Signal handler and thread
context callbacks. It is up to the programmer to choose which callback registration method to use.
Anyhow most of the syscalls available are signal handler unsafe. Thus it is recommended to use
thread context callbacks.
In order to trigger the callback execution a callback detection must be done first. We will describe
how we detect either some application has callbacks registered or not in the chapter 3.3. A message
has to be sent to the application after the detection. LinuxSSI checkpointer makes use of two utilities
(checkpoint and restart) to trigger a checkpoint. Thus the callback library should be able to handle
incoming callback execution requests from this tools and be able to send a reply upon a successfull
or failed execution.
The library should be able to support registration of different callbacks on checkpoint and restart.
Hence two messages can be send to the callback library. The first one initiates the callback execu-
tion on checkpoint and the second one on restart. After a checkpoint the applications needs to run
as it used to run before taking the checkpoint. Which means that some of the resources have to be
closed before taking the checkpoint and reopened appropriate after the checkpoint. We introduce a
third message which is send after a successful checkpoint to execute the continue callbacks. These
callbacks are in charge of reopening resources closed before taking a checkpoint.
The figures 11 and 12 illustrate the communication workflow between the callback library and the
checkpoint/restart utility.

Figure 11: Callback workflow on checkpoint

13/17 XtreemOS–Integrated Project

IST-033576 D2.2.10

Figure 12: Callback workflow on restart

3.3 Implementation

Our implementation consists of mainly two files (libs/libkrgcb/libkrgcb.c and libs/include/libkrgcb.h).
Furthermore we have made minor modifications to the checkpoint/restart commands and kernel.
As already mentioned in the chapter 3.2 there are several decisions which have been taken in order to
realize the callback library.
The first decision regards the communication between the callback library and checkpoint/restart
commands. Since there is currently no way to checkpoint/restart pipes, sockets and files we have
decided to use signals in order to trigger the callback execution on checkpoint and restart. Three
unassigned real time signals (37, 38 and 39) have been chosen in order to signalise the execution of
checkpoint, continue and restart callbacks.
All callbacks registered for signal handler context will be executed outside signal handlers them-
selves. In case of a thread context callback registration a worker thread will be spawn on the initial
thread context callback registration. This thread will be unlocked out of the signal handler and trigger
the callbacks execution.
Moreover we employ a temporary message queue inside the checkpoint utility which is used to re-
ceive the status of the callback execution from the callback library for each application. Each message
queue is identified by the checkpoint image directory and application id which is closed shortly before
taking a checkpoint.
The second decision concerns the callback detection. It is necessary to detect either some application
has callback support enabled or not before sending a signal to execute callbacks. Without such a prop-
per detection checkpoint/restart utilities would be able to crash any application. Currently there are
only few signals which are ignored by default in Linux (PWR, WINCH, CHLD and URG). Sending
any other signal will lead to exit. We have studied several methods of callback detection including
ones based on touching files on disk. Wherever they turned out to be insecure. A possible attacker
could create a fake file and make the application crash. In order to realize a reliable callback detec-
tion a new kernel level bitmask has been integrated for each application in cooperation with Kerrighed
core developers. This bitmask is set during the initialisation of the callback library and inspected by
the checkpoint and restart commands before sending a signal.
The table 3.3 shows the current internal functions used by the callback library.

Currently the callback library provides the following external functions to be used by the applica-
tion and checkpoint/restart commands:

In order to test the callback library we have developed a callback test application (tests/app-

XtreemOS–Integrated Project 14/17

D2.2.10 IST-033576

Function Description
int cb_count_read(hook, count) Read callback count
int cb_count_write(hook, value, count) Update callback count
int cr_detect_callbacks(pid, from_appid) Detect callbacks
void free_info_memory() Free info structure memory
void handle_cb_sig(signum) Signal handler
int register_callback(hook, func, *arg) Main function to register a callback
int run_callbacks(hook) Run callbacks
int send_message(msg) Send a message to checkpoint/restart utilities

Table 1: Internal functions - callback library

Function Description
int cr_callback_init(void) Init callback library
void cr_callback_exit(void) Exit callback library
int cr_register_chkpt_callback(func, *arg); Register checkpoint callbacks (signal)
int cr_register_restart_callback(func, *arg); Register restart callbacks (signal)
int cr_register_continue_callback(func, *arg); Register continue callbacks (signal)
int cr_register_chkpt_thread_callback(func, *arg); Register checkpoint callbacks (thread)
int cr_register_restart_thread_callback(func, *arg); Register restart callbacks (thread)
int cr_register_continue_thread_callback(func, *arg); Register continue callbacks (thread)
int cr_execute_chkpt_callbacks(pid, from_appid) Execute checkpoint callbacks
int cr_execute_restart_callbacks(pid) Execute restart callbacks
int cr_execute_continue_callbacks(pid, from_appid) Execute continue callbacks

Table 2: External functions - callback library

s/cb_test.c) using sockets. It has been included into the set of KTP regressions tests and can be used
to test the callback registration and execution.

3.4 User Manual

The callback library is installed by default during the LinuxSSI setup. It can be found inside the
“/usr/local/lib” directory. Applications can link (-libkrgcb) it to support callbacks. In order to use the
library the programmer first has to include the “libkrgcb.h”-Header file:

#include <libkrgcb.h>

Afterwards the initialisation routine must be called out of the master process (see 3.2) using the
function: “cr_callback_init();”

Callbacks can be registered by using the functions described above. The following example pro-
vides a simple signal handler context callback registration of a checkpoint, restart and continue call-

15/17 XtreemOS–Integrated Project

IST-033576 D2.2.10

back:

cr_register_chkpt_callback(&callback1, NULL);

cr_register_restart_callback(&callback2, NULL);

cr_register_continue_callback(&callback2, NULL);

The callback library must be exit appropriately by using the “cr_callback_exit();“-function after
a successfull process execution.

4 Conclusion

The LinuxSSI-1.0-rc1 release has been produced in May 2009 and included in the latest XtreemOS
2.0 CD. The XtreemOS cluster flavour is available on the latest XtreemOS installation CD. XtreemOS-
G services (AEM daemon, XtreemFS client) are able to run on top of this release which also supports
the system level VO support mechanisms. Since November 2008, LinuxSSI kernel checkpointer
has been optimized through incremental checkpointing. Furthermore callback support has been in-
troduced in LinuxSSI and integrated in the official Kerrighed version. The LinuxSSI kernel check-
pointer is fully integrated in the XtreemGCP Grid checkpointing service and is able to checkpoint
multi-process applications with multiple threads.

In our future work directions, we plan to extend the LinuxSSI kernel checkpointer to use the
support provided by kDFS for file checkpointing. Checkpointing and restart of SYSV IPC shared
segments will be reviewed for integrating it into the previously introduced framework for saving and
restoring shared structures. Moreover, the needed support for checkpointing applications composed
of processes communicating through Inet sockets will be implemented. Then, it will be possible to
checkpoint/restart parallel applications such as MPI applications.

In order to support the migration of IP services executed on top of LinuxSSI, we plan to add
dedicated mechanisms to the regular Linux network stack. This improvement will allow moving
an IP service from one node to another one within a LinuxSSI cluster, transparently to the service
clients running on remote nodes. External IP services, including those XtreemOS-G service dameons
running on all Grid resource nodes, could take advantage of this feature.

Moreover, we plan to define and experiment advanced load balancing strategies using the cus-
tomizable scheduler framework.

Finally, we will continue our efforts to push LinuxSSI patches in Linux mainstream development.
According to the strategy defined in the early stages of the XtreemOS project, we need to first push
the KDDM Kerrighed foundation layer into Linux kernel. Towards this goal, we plan to provide a
preliminary support to node addition/removal in the KDDM layer.

During the last twelve months of the project, we will continuously provide support to the commu-
nity and in particular to partners involved in WP4.2 who are in charge of validating XtreemOS and
those involved in WP4.1 who are responsible for the packaging of the XtreemOS software. Extensive
testing activities will take place to further increase the stability of XtreemOS cluster flavour.

XtreemOS–Integrated Project 16/17

D2.2.10 IST-033576

References

[1] Transparent, Incremental Checkpointing at Kernel Level: a Foundation for Fault Tolerance for
Parallel Computers, Washington, DC, USA, 2005. IEEE Computer Society.

[2] D. Bovet and M. Cesati. Understanding the Linux Kernel, Third Edition. O’Reilly, 2006.

[3] XtreemOS consortium. Design and implementation of the first advanced version of LinuxSSI.
Deliverable D2.2.8, November 2008.

[4] R. M. Fujimoto, J.-J. Tsai, and G. Gopalakrishnan. Design and performance of special purpose
hardware for time warp. In ISCA ’88: Proceedings of the 15th Annual International Sympo-
sium on Computer architecture, pages 401–409, Los Alamitos, CA, USA, 1988. IEEE Computer
Society Press.

[5] F. Gomes and A. F. Bosco. Optimizing incremental state-saving and restoration. PhD thesis,
University of Calgary, Calgary, Alta., Canada, Canada, 1996. A.-U. Brian.

[6] M. Helsey. Process event connector. 2005.

[7] J. Mehnert-Spahn, E. Feller, and M. Schoettner. Incremental checkpointing for grids. Linux
Symposium, March 2009.

[8] Darrin West and Kiran Panesar. Automatic incremental state saving. In Proc. 10th Workshop on
Parallel and Distributed Simulation (PADS 96, pages 78–85, 1996.

17/17 XtreemOS–Integrated Project

